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ABSTRACT

A core part of cognitive therapy for low mood is learning to identify and challenge negative
beliefs. However, it is currently unclear whether improved ability to recognise such beliefs,
and the biased interpretations of events which may maintain them, is a mechanism of symp-
tom change during treatment. Here, we investigated the effects of a learning task (training to
identify and select self-enhancing interpretations of events) and a brief cognitive restructuring
intervention (how exploring alternative explanations of events may result in improved mood)
on causal attribution tendencies. We found that both learning training and the restructuring
intervention decreased tendencies to make unhelpful attributions and increased tendencies to
make self-enhancing attributions. Across two studies, changes in attribution tendencies were as-
sociated with higher learning rates during learning training, an effect specific to learning about
different kinds of event attribution. Contrary to expectation, we found no evidence that faster
learning was associated specifically to changes in attribution tendencies following cognitive re-
structuring. Since participants with higher learning rate estimates also provided explicit ratings
and free-text descriptions of event causes which were closer to the ground truth, we interpret
this as representing a greater benefit of learning training in individuals who were better able
to understand the task state space. We suggest that personalized training, in conjunction with
feedback based on interpretable computational model output, may provide a useful form of
augmentation or learning-support tool during therapy.
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INTRODUCTION

A core aspect of cognitive therapy for low mood is learning to identify negative beliefs, and
exploring alternative explanations for events which challenge these beliefs (‘cognitive restruc-
turing’) (Beck et al., 1987; Clark, 2022). However, there is currently little definitive evidence
as to whether learning to identify negative beliefs and application of restructuring skills are
key drivers of symptom change during psychological therapy for low mood (Lorenzo-Luaces
et al., 2015, 2016). Demonstrating this using data from traditional randomized-controlled tri-
als involving psychotherapy treatment programs (e.g., cognitive-behavioural therapy, or CBT) is
challenging, given the multiple types of interventions delivered in each program coupled with
a lack of the fine-grained resolution needed to infer temporal dependencies between changes
in beliefs and symptoms (Kazdin, 2009; Lorenzo-Luaces et al., 2015). There is some evidence
to suggest that greater self-reported frequency and/or skill in applying cognitive strategies is
associated with greater overall symptom reduction following C(B)T (Hundt et al., 2013; Strunk
et al., 2014; Hawley et al., 2017; Gumport et al., 2018; Forand et al., 2018; Schmidt et al.,
2019). However, the degree of conceptual overlap between self-report measures of cognitive
skills and symptoms themselves (the ’jangle’ fallacy) means disentangling changes in the for-
mer from overall treatment response or residual symptom burden is hard (Hundt et al., 2013;
Lorenzo-Luaces, 2023).

Behavioural measures of cognitive processes may be one way to help solve this problem, since
they are less close to the target construct of interest - symptom change (Moutoussis et al., 2018;
Reiter et al., 2021; Huys et al., 2021). Combining cognitive-behavioural measures with random-
ized allocation of therapy-like interventions in high-throughput testing can provide an efficient
way to test whether specific components of psychological treatments may causally impact spe-
cific cognitive processes, prior to extending testing to resource-intensive clinical settings (Dercon
et al., 2023; Norbury et al., 2023). Here, we use this approach to test whether a behavioural
measure of attribution tendencies (how people tend to reason about the causes underlying
events) is affected by 1) training in learning to identify different kinds of causal attributions
(a learning task intervention) and 2) practice in identifying and challenging unhelpful attribu-
tions of events in their own lives (a brief cognitive restructuring intervention). Cognitive therapy
is essentially a process of learning (e.g., Moutoussis et al. 2018), and it has been suggested that
individuals with greater capacity for learning during treatment show greater benefits (Bruijniks
et al., 2019). On this basis, we further examined whether individual differences in learning task
performance were related to individual differences in response to a brief cognitive restructuring
intervention.

Across two studies, we found evidence that both learning task training and a cognitive restruc-
turing intervention affected causal attribution tendencies: shifting these away from unhelpful
or ’depressogenic’ patterns (e.g., lower tendency to attribute negative events to self-related or
internal causes) and towards self-enhancing styles (e.g., higher tendency to attribute positive
events to internal causes). In both studies, greater shifts in attribution tendencies were asso-
ciated with higher learning rate estimates on the learning training task. Since we found no
association between attribution change and learning rates from a matched control task (which
did not concern causal attributions), we interpret this as being due to greater ability to dis-
criminate between different kinds of attributions, or a better understanding of the learning task
state space. There was no evidence that individuals with faster learning rates showed greater
responses to the cognitive restructuring intervention specifically. We discuss these findings with
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reference to recent proposals for augmenting psychological treatments with strategies aimed at
boosting learning and memory of treatment content, and who this might be most effective for
(Harvey et al., 2014; Nord et al., 2023).

RESULTS

OVERVIEW OF STUDY DESIGN AND MEASURES

Here, we report results of two studies with similar overall design (Figure 1a). In both studies,
participants completed a task-based measure of causal attribution tendencies, before and after
two types of intervention: a learning training (or control learning) task, and a brief cognitive
restructuring (or control) intervention. This design allowed us to measure changes in tendency
to attribute events to causes which are internal (related to the self, compared the outside world)
and global (likely to be active in all situations, rather than this specific one alone), following
either type of intervention. Biased interpretation of events along these dimensions is commonly
observed in people with depression, and according to cognitive theories is thought to be critical
in maintenance of low mood (see Abramson et al. 1978; Beck et al. 1987, Discussion).

The different study tasks are outlined in Figure 1b, and described fully in the Methods. The
main dependent measures across studies were attribution tendencies on the causal attribution
task. Here, participants were presented with a series of brief descriptions of everyday events,
and asked to choose which of four listed causal explanations they would consider most likely, if
such an event had happened to them. Model-based analysis of task choices yields parameters
describing individual tendencies to ascribe positive and negative events to internal (vs external)
and global (vs specific) causes. Of note, these measures have previously been found to exhibit
good psychometric properties, as well as correlations with self-reported negative beliefs about
the self (as measured by the Dysfunctional Attitudes Scale, Norbury et al. 2023).

The learning training task also presented participants with a series of events and potential causal
explanations, but this time using a third-person perspective and explicit feedback. Participants
were instructed that that they would be learning about how a hypothetical person in a particular
mood might reason about the causes behind events, and they would have to learn to select the
‘correct’ kinds of reasons for that person via explicit feedback. The control learning task was
identical in structure, but required participants to learn to sort different objects according to
their physical property dimensions, without any requirement for understanding different kinds
of causal explanations (see Methods). Model-based analysis of data from both tasks yields esti-
mates of learning rates, quantifying how quickly participants are able to update their response
option choices based on explicit feedback.

Finally, in between completion of the two causal attribution task versions, and following com-
pletion of the learning training or control learning tasks, participants completed a brief therapy-
informed intervention. The cognitive restructuring intervention consisted of information about
a cognitive model of mood (link between interpretations of events and feelings), interactive
exercises identifying helpful and unhelpful attributions of the same events, inviting people to
practise generating alternative explanations for recent events in their own lives, and a summary
comprehension quiz. The control intervention was closely matched in terms of length, interac-
tivity, and self-relevant exercise content, but based on materials from emotion-focused therapy
Greenberg (2015), that did not reference how different interpretations of events may influence
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mood. Please note that data from the first study were partially reported previously (Norbury
et al., 2023), but not the learning task data.

Figure 1: Overview of study designs and measures. a Experimental designs and randomi-
sation conditions for each study. In both studies, a cognitive-behavioural measure of causal
attribution tendencies (the causal attribution task), was completed pre- and post- completion
of two types of intervention. In study 1, all participants completed the learning training task,
and were randomly allocated to complete either brief cognitive restructuring or a control inter-
vention. In study 2, participants were randomly assigned to complete either learning training
or a control learning task, followed by either brief cognitive restructuring or a control inter-
vention. All studies took place online, over a single experimental session (around 1 hour in
length). b Representative screen-shots of different study measures. The causal attribution task
asks participants to choose between four different potential explanations of events, if such an
event happened to them. The learning training task uses a third-person framing, and requires
participants to learn the kinds of explanations thought to be correct for a hypothetical person in
a particular mood state, given explicit feedback. The control learning task, identical in structure,
requires participants to learn about the properties of objects, rather than causal explanations.
The brief cognitive restructuring (and control) interventions both took the form of a series of
interactive worksheets, which asked participants to learn about a particular therapy model, and
then apply it to recent events from their own lives.

PARTICIPANTS

Participants for both studies were recruited from an online research participation platform and
are described in Table 1. Samples were reasonably diverse in terms of age, gender, and neurodi-
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vergence, but were predominantly White, with relatively stable financial and housing status. In
both studies, samples showed evidence of self-selection for mental health research, given 40%
reporting of previous treatment for a mental health problem, and mild-to-moderate average en-
dorsement of current low mood and social anxiety symptoms (proportion of participants above
cut-off score for clinically-significant depressed mood according to the PHQ9 = 32%, 27%; pro-
portion of participants with significant social anxiety according to the miniSPIN = 48%, 46%;
for full distributions of clinical scores by condition in each study see Figure S1).
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Study 1 Study 2

N 200 164

Age (years)
mean (SD)
range

37.2 (10.5)
19-63

36.9 (10.5)
20-65

Gender
Woman
Man
Non-binary or other

110 (55%)
86 (43%)
4 (2%)

75 (46%)
86 (52%)
3 (2%)

Race/
ethnicity

White
Asian
Black
Mixed
Other

165 (83%)
14 (7%)
5 (3%)
8 (4%)
8 (4%)

125 (78%)
13 (8%)
12 (7%)
10 (6%)
3 (2%)

Employment
status

Employed
Unemployed
Not seeking

147 (74%)
19 (10%)
33 (17%)

127 (77%)
13 (8%)
24 (15%)

Financial
status

Doing okay
Just about getting by
Struggling

95 (48%)
74 (37%)
30 (15%)

85 (52%)
61 (37%)
18 (11%)

Housing
status

Homeowner
Tenant
Other

90 (45%)
86 (43%)
23 (12%)

87 (53%)
49 (30%)
28 (17%)

Neuro-
divergence

Yes
No
Prefer not to say

25 (13%)
167 (84%)
8 (4%)

25 (15%)
135 (82%)
4 (2%)

Previous treatment for
a mental health problem

Yes
No
Prefer not to say

89 (45%)
103 (52%)
8 (4%)

55 (34%)
105 (64%)
4 (2%)

If yes, type of treatment
(all that apply)

Talking therapy
Medication
Self-guided
Other

62 (31%)
62 (31%)
39 (20%)
5 (3%)

36 (22%)
37 (23%)
27 (17%)
4 (2%)

PHQ9 total mean (SD) 7.3 (6.2) 6.3 (5.8)
DAS-SF total mean (SD) 19.2 (4.6) 18.6 (4.8)
miniSPIN total mean (SD) 5.8 (3.6) 5.5 (3.4)

Table 1: Self-reported demographic and clinical data for all study participants. Self-
reported race/ethnicity was based on information provided by Prolific. All other information
was recorded via our custom demographic questionnaire (see Methods). Employment status
categories were employed (including full-time and part-time employment), unemployed (job
seekers and those unemployed owing to ill health), and not seeking employment (stay-at-home
parents, students, and retirees). Housing status categories were homeowner (including those
with a mortgage), tenant, and other (living with family or friends, homeless, or living in a
hostel). Neurodivergence was defined as “a term for when someone processes or learns infor-
mation in a different way to that which is considered ’typical’: common examples include autism
and ADHD”. Categories for previous mental health treatment were talking therapy (including
cognitive-behavioural therapies), medication, self-guided (e.g., workbooks or apps), or other.
PHQ9 total, Physician’s Health Questionnaire 9-item measure of depressed mood total score
(possible range 0-27). miniSPIN total, mini Social Phobia Inventory total score (possible range
0-12). DAS-SF total, Dysfunctional Attitude Scale short-form total score (possible range 9-36).
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SEPARATE EFFECTS OF LEARNING TRAINING AND BRIEF COGNITIVE RESTRUCTURING ON
CAUSAL ATTRIBUTION TENDENCIES

We first examined whether there was evidence for separate effects of completing the learning
training task and brief cognitive restructuring intervention on attribution tendencies, as mea-
sured on the causal attribution task. Specifically, we used a hierarchical Bayesian modelling
approach to test whether there was evidence for additional group-level effects of having been
randomized to learning training vs control learning task conditions, and cognitive restructuring
vs control intervention conditions (Methods, Equation 6). Analysis models were the same as
described previously (see Norbury et al. 2023), with an extension for study 2 data described
below.

In study 1 participants all completed the learning training task, so in these data we were only
able to examine group-level effects of cognitive restructuring vs control intervention conditions.
As reported previously, we found that completion of the brief cognitive restructuring interven-
tion resulted in decreased tendency to attribute negative events to internal causes (posterior
estimate=-0.48 [90%CI -0.65– -0.31]), and an increased tendency to attribute positive events to
general or global causes (posterior estimate=0.49 [90%CI 0.19–0.80]) (Figure 2a,b; Table S1).
Of interest, the group means for each parameter showed some evidence of shifts between time-
points – with all participants appearing to show slightly higher mean endorsement of internal
and global attributions of positive events at the second measurement (Figure 2b). These group-
level shifts could represent common effects of completing the cognitive restructuring and control
interventions on attribution tendency. However, as the control intervention made no reference
to how interpretations of events might affect mood, or reappraisal strategies, this is unlikely. An
alternative explanation is that these effects are due to completion of the learning training task
by all study participants, since this task directly involves learning to recognise different kinds of
attributions.

We tested this idea directly in study 2. Importantly, study 2 included randomisation conditions
where participants completed a control learning task, as well as cognitive restructuring and con-
trol conditions. To formally test whether completion of the learning task resulted in group-level
changes in attribution tendencies, we augmented the analysis model for study 2 data such that
post-intervention (time 2) attribution tendencies could be influenced by group-level parame-
ters related to learning training condition, as well as the restructuring intervention condition
(Methods, Equation 7).

Model comparison revealed that the model with additional effects for learning task condition
had marginally better predictive accuracy for causal attribution task data than the model with re-
structuring intervention condition alone (difference in expected log pointwise predictive density
for left-out causal attribution task data, ELPDdiff=-0.4, but of less than 5x than the standard
error of the estimate, se=6.8), suggesting that this indeed had an additional impact on changes
in attribution tendencies.
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Figure 2: Independent effects of learning training and brief cognitive restructuring on
causal attribution. a Posterior mean (and SD) parameter estimates for the causal attribution
task for each participant at time 1 (pre-intervention) and time 2 (post-intervention) by randomi-
sation group, in study 1 participants (N=200). Parameter estimates plotted here represent the
probability of endorsing a given kind of attribution for positive and negative events, which are
governed by the latent trait parameters (θ). Lines of best fit for mean time 1 vs time 2 estimates
for individuals in each group are plotted for illustration purposes. b Posterior parameter
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Figure 2: estimates for group means (over all participants/randomisation conditions) for each
parameter at each time point, and the additional effect of the cognitive restructuring interven-
tion at time 2, in study 1 participants. Thick inner lines represent 50%, and thin outer lines
represent 90% Credible Intervals, the point estimate is the mean, and shading represents pos-
terior probability density. For visualisation purposes, intervention effects (bold text) have been
scaled by the square root of the mean posterior variance estimates for parameter values at time
2, making them roughly equivalent to SMDs. c The same plot as (a), for study 2 participants
(N=164). d The same plot as (c), for study 2 participants. Here, group-level effects on time 2
parameter estimated were modelled separately for participants who completed the restructuring
vs control intervention, and learning vs control learning training.

Inspection of changes in individual parameter estimates between time 1 (pre-intervention) and
time 2 (post-intervention) revealed that participants who completed both the learning training
task and cognitive restructuring intervention showed the greatest shifts away from depresso-
genic (internal, global) attributions of negative events, and towards self-enhancing attributions
of positive events (Figure 2c). Examination of posterior parameter estimates for group-level ef-
fects revealed that, when accounting for learning task condition, the restructuring intervention
both decreased tendency to attribute negative events to internal causes (posterior estimate=-
0.30 [90%CI -0.49– -0.11]), and increased tendency to attribute positive events to internal
causes (posterior estimate=0.63 [90%CI 0.29–0.97]) (Figure 2d, Table S2). There was also ev-
idence for separate group-level effects of completion of the learning training vs control learning
task on attribution tendencies. Specifically, completion of the learning training task resulted in
further decreased internal attribution of negative events, as well as increased internal and global
attribution of positive events on the causal attribution task (posterior estimates=-0.49 [90%CI
-0.68– -0.30], 1.15 [90%CI 0.80–1.49, 0.94 [90%CI 0.60–1.27], Table S2).

Therefore, at the group level, both completion of the restructuring intervention and completion
of learning training task impacted causal attribution tendencies for everyday events – with both
intervention components resulting in a decreased tendency to choose unhelpful and an increased
tendency to choose self-enhancing interpretations.

LEARNING RATES FROM THE LEARNING TRAINING TASK AND CHANGES IN SELF-ENHANCING
ATTRIBUTIONS

If learning is critical to the effects described above, we might reasonably expect that the effects
of the learning task intervention to depend on individual differences in learning performance.
We therefore next explored whether model-based metrics of learning were related to changes in
causal attribution tendencies.

Learning rates were estimated from learning training task data using a simple Rescorla-Wagner
model (see Methods). Briefly, this algorithm accounts for individual differences in the updating
of response option (causal explanation type) values according to feedback using learning rate
parameters (α), individual differences in starting values of different explanation types (bias
towards away or away from internal-global explanations of positive and negative events), and
individual differences in how value-driven participants are in their choice behaviour (softmax
inverse temperature parameter, β). Full information on model derivation via model comparison,
chosen model performance, and simulation-based calibration analysis (including recovery of
individual model parameters) can be found in the Methods and Supplementary Results.
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Given we observed minimal variation in learning about negative events in our samples (in ei-
ther raw choice accuracy or posterior model parameter estimates, Figure S2), we focused our
analysis on learning estimates for positive events: i.e., speed of learning to select self-enhancing
attributions of positive events, rather than speed of learning to avoid unhelpful attributions of
negative events. Positive learning rates from the learning task were then compared to changes in
self-enhancing attributions (internal and global interpretations of positive events) on the causal
attribution task.

As a first-pass analysis, we examined whether any relationship was evident between point es-
timates (posterior parameter means) from separately modelled learning and causal attribution
task data. We then carried out a formal test of association (that more appropriately takes into
account precision of estimation of different parameters) by analysing learning and causal attri-
bution task data together in a joint hierarchical Bayesian model. This approach allows for the
direction estimation of associations between relevant parameters in the form of posterior beta
weights (see Methods).

Associations between separately-modelled learning and attribution task data. When com-
paring point estimates of learning rates to changes in point estimates of parameters govern-
ing attribution tendencies, we observed associations between positive learning rates (αpos)
and changes in internal and global attributions of positive events (study 1: Rαpos,∆internal =
0.24, p < 0.001, Rαpos,∆global = 0.10, p = 0.15, study 2: Rαpos,∆internal = 0.24, p < 0.001,
Rαpos,∆global = 0.20, p < 0.001; all correlations weighted by the posterior precision of αpos

estimates; Figure 3a,d). These relationships were not evident for learning rates derived from
the control learning task (Rs = 0.14, 0.10; Figure 3d).

There was no convincing evidence that the strength of these correlations differed significantly
between participants who received the cognitive restructuring compared to control interventions
(for change in internal-positive attribution tendencies, study 1: Rs = 0.27, 0.21, study 2: Rs =
0.12, 0.22; for change in global-positive attribution tendencies, study 1: Rs = 0.20, 0.04, study
2: Rs = 0.25, 0.18, all p > 0.9, Fisher’s R-to-Z tests).

Joint hierarchical Bayesian modelling of learning and attribution task data. To formally as-
sess associations between different task parameters, we constructed joint models of learning and
attribution task data. Specifically, the model of the causal attribution task data was extended via
inclusion of beta weight parameters that reconstructed group-level effects on time 2 parameter
estimates as a linear combination of an intercept term plus a beta weight*individual learning
rate parameter estimates. The prior values for all beta weights were centred around zero – such
that a significant contribution of learning rate parameters to time 2 (post-intervention) param-
eter estimates should be reflected in a posterior beta weight estimate with a Credible Interval
excluding zero (see Methods).
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Figure 3: Changes in self-enhancing attributions were positively associated with learning
rate estimates from the learning training task, but this effect was not greater in partici-
pants who completed cognitive restructuring. a Correlations between posterior mean esti-
mates for positive learning rate from the the learning training task (αpos) and changes in mean
values of parameters governing tendency to select internal and global attributions of positive
events in study 1 participants. Point weights represent precision of estimation of αpos (1/pos-
terior SD). b Posterior estimates of group-level effects from joint models of learning and causal
attribution task data. βLEARN , posterior estimates for weight of αpos estimates on change in
internal and global attributions of positive events. For visualization purposes, β estimates have
been scaled by the ratio of SDs of the predictor (αpos) to outcome (mean posterior parameter
variance estimates), making them roughly equivalent to standardized regression coefficients.
Black lines represent 50,90% posterior Credible Intervals, and shading represents posterior prob-
ability density. c The same plot as b, for a joint model with additional β weights for participants
who completed brief cognitive restructuring in addition to learning training (βLEARN+CR).
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Figure 3: d The same plot as a, for study 2 participants. e The same plot as b, for study 2
participants. βCONTROL, posterior estimates for weight of control learning task learning rate
estimates on change in attribution tendencies. f, The same plot as e, for a joint model with
additional weights for participants who completed completed brief cognitive restructuring in
addition to learning training.

Two types of joint model were constructed. The first set of models tested if learning rates were
associated with changes in attribution tendencies regardless of restructuring intervention con-
dition (βLEARN , Equation 10). For study 2 data, the model contained separate weights for each
learning task condition, in order to test if associations were specific to learning about causal
attributions (βLEARN , βCONTROL, Equation 11). The second set of models tested whether
these associations might differ in strength depending on whether or not participants completed
the cognitive restructuring intervention: i.e., if faster learning about attributions plus practice
in identifying and challenging these in participants’ own lives might result in the greatest im-
provement. This involved inclusion of an additional beta weight parameter contributing to
time 2 parameter estimates, only for participants who completed brief cognitive restructuring
(βLEARN+CR, see Methods, Equation 12, Equation 13).

Results of the first joint models provided strong evidence of positive relationships between αpos

estimates and changes in internal and global attributions of positive events, across interven-
tion conditions, in study 1 participants (βLEARN internal-positive=0.53 [90%CI 0.34–0.75],
βLEARN global-positive=0.44 [90%CI 0.28–0.62], Figure 3b, Table S3). These effects were
replicated in study 2 data (βLEARN internal-positive=0.29 [90%CI 0.19–0.40], βLEARN global-
positive=0.26 [90%CI 0.16–0.37]) - but were not evident for learning rates estimated from
the control learning task (βCONTROL internal-positive=0.01 [90%CI -0.01–0.03], βCONTROL

global-positive=0.01 [90%CI -0.01–0.02], Figure 3e, Table S4). This suggests that associations
between speed of learning and subsequent change in self-enhancing attribution tendencies were
specific to learning training in the domain of causal attributions.

Results of the second joint models provided marginal evidence for an additional influence of
αpos estimates on change in internal-positive attributions in participants who completed the
restructuring intervention in study 1 (βLEARN+CR internal-positive=0.22 [90%CI 0.02-0.42]),
but this effect was not replicated in study 2 (βLEARN+CR internal-positive=-0.07 [90%CI -
0.19–0.05]. In neither study was there evidence for an additional influence of αpos estimates on
change in global-positive attributions in restructuring group participants (study 1: βLEARN+CR

global-positive=0.09 [90%CI -0.03–0.22],Figure 3c, Table S5, study 2: βLEARN+CR global-
positive=0.09 [90%CI -0.01–0.19], Figure 3f, Table S6). Therefore we found no strong evidence
in favour of a selective interaction between faster learning on the learning training task and
response to the cognitive restructuring intervention, specifically.

Importantly, when the likelihood of the attribution task data was compared between the original
analysis model and joint models, both joint models had superior predictive accuracy in left-out
data (Table S7). This suggests that overall estimates of learning rates from the learning task were
providing relevant information for inferring post-intervention causal attribution task parameter
values.
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LEARNING RATES FROM LEARNING TASK DATA REFLECT UNDERSTANDING OF THE TASK
STATE-SPACE

We next explored relationships between learning rates estimates and other learning task data.
Specifically, after each learning task scenario, participants were asked to provide explicit ratings
of the kinds of causes that were thought to be ’correct’, along internal-external and global-
specific dimensions, and also provided free-text descriptions of each cause. These data provide
insight into how well participants understood the ground truth of each scenario, as reflected in
specific types of attributions they had to learn to select.

Full analysis of learning task data (choice accuracy, response times, explicit-cause ratings and
free-text cause descriptions) in available in the Supplementary Results, alongside further details
of model-based analysis of learning task data. In summary, at the group level, participants were
able to learn to perform the task (improved in choice accuracy over trials and scenarios), al-
though in both studies participants were slower to learn to select self-enhancing attributions for
positive events than to avoid unhelpful attributions of negative events (Figure S2). Overall, par-
ticipants were also able to describe the kinds of causes that were correct for each scenario using
explicit ratings scales (Figure S3). Natural-language processing (NLP) classification of free-text
descriptions also distinguished between scenarios, and participants with more accurate explicit
causal ratings provided free-text descriptions with higher probabilities for ground truth causal
labels (at least along the internal-external dimension; Figure S4) – suggesting these measures
tap a common understanding of task structure.

Relationships between positive learning rates and explicit cause ratings. Posterior mean
estimates of learning rates for positive events (αpos) were positively associated with the explicit
ratings of ’correct’ causes for each task scenario. In other words, participants who learned
faster to select internal-global attributions of positive events during the task were also able
to better identify that correct causes were internal (self-related) and global (general), using
explicit rating scales (study 1: Rs = 0.2−0.35, p < 0.005, study 2: Rs = 0.20−0.33, p <= 0.033,
Figure S5). These relationships persisted in linear mixed-effects models controlling for scenario
number and mean posterior inverse temperature (β) parameter values, weighted by posterior
precision of αpos estimates (internal-external cause ratings: study 1: F1,238 = 17.2, study 2:
F1, 114.5 = 9.5, p < 0.005; global-specific cause ratings: study 1: F1,235 = 13.2; p < 0.001, study
2: F1, 112.7 = 4.1, p < 0.05). For the control learning task, there was little variance in explicit
ratings data (see Figure S3c), so these relationships were not examined.

Relationships between positive learning rates and free-text cause description label prob-
abilities. In study 1, posterior mean estimates of αpos were significantly correlated with clas-
sifier label probabilities for positive events in each scenario, along the internal-external dimen-
sion ([events were caused by] “myself”, Rs = 0.24 − 0.28, p < 0.001; [events were caused
by] “other people”, Rs = 0.2 − 0.32, p < 0.001; Figure S6). These effects persisted in linear
mixed-effect models controlling for scenario number and posterior mean inverse temperature
(β) parameter values, weighted by posterior precision of αpos estimates (F1,239 = 12.1, p <
0.001;F1,267 = 5.6, p < 0.02). In study 2, this association was only marginally evident ([events
were caused by] “myself”, Rs = 0.17 − 0.22, p < 0.07; [events were caused by] “other people”,
Rs = 0.14− 0.25, p < 0.10), and did not survive in the controlled model (F1,111 = 2.13, p = 0.15,
F1,140 = 2.59, p = 0.11). No relationships were evident between learning rates and classifier la-
bel probabilities for the free-text descriptions of positive events in the global-specific dimension
in either sample, likely as this dimension was represented much more noisily in classifier output
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(see Supplementary Results).

Relationships between positive learning rates and self-reported demographic and clinical
data. Across studies, there was no evidence that mean posterior αpos estimates varied according
to participant age, gender identity, neurodivergence, or previous experience of talking therapy
(all Rs < 0.1, Figure S7, Figure S8). Interestingly, whilst in study 1, there was no evidence of a
relationship between learning rates and current depression symptom severity (PHQ9 total score,
R < 0.1), in study 2 participants with higher current depression symptom severity had lower
positive learning rates (R = 0.26, p = 0.005). Control task learning rates did not vary by gender,
neurodivergence, or current mental health symptoms, but were negatively associated with age
(R = 0.50, p < 0.001, Figure S7).

In summary, this indicates that in a reinforced setting, participants who learned more quickly to
select self-enhancing attributions were also able to better describe the types of causes reinforced
as correct during the task. This suggests that participants with higher learning rate estimates
(αpos) may have had a greater understanding of the ground truth dimensions along which re-
sponse options (potential causal explanations) varied, allowing them to more quickly choose
the ‘correct’ responses for a given scenario. This ability was not systematically influenced by so-
ciodemographic factors or related to current experience of mental health symptoms – although
inconsistent findings across studies suggest this could be usefully explored in future work.

DISCUSSION

Theories of cognitive restructuring suggest it is a process based on learning (Moutoussis et al.,
2018). It has been proposed that individual differences in learning and memory of therapy con-
tent may be a key moderator of symptom change during treatment (Harvey et al., 2014; Brui-
jniks et al., 2019). Inspired by recent demonstrations that clinically-relevant inference processes
can be reliably measured using computerised learning tasks (Dorfman et al., 2019; Hopkins
et al., 2021), here we sought to explore whether ability to recognise and learn about different
attributions during a learning task was related to the subsequent changes in causal attribution
tendencies, in the absence or presence of a brief cognitive restructuring intervention.

According to cognitive theories of depression, negative beliefs about the self and biases towards
interpreting negative events as being due to enduring, overly-general and self-related factors
are core drivers of low mood (Beck et al., 1987; Abramson et al., 1978; Clark and Beck, 2010).
There is good evidence from cross-sectional studies that depression is related to enhanced en-
dorsement of negative self-beliefs and decreased tendency to incorporate self-enhancing attri-
butions (e.g., internal attribution of positive events, and external attribution of positive events;
Mezulis et al. 2004; Chahar Mahali et al. 2020; Bartucz et al. 2022), with some evidence that
attributional style is predictive of future depressed mood (Pearson et al., 2015). Cognitive re-
structuring, a form of psychological therapy which involves learning to identify and challenge
overly negative or unhelpful interpretations of events, is an effective treatment for low mood
(Clark, 2013). However, we currently lack conclusive evidence as to whether intervening on
negative self-beliefs or attributional tendencies is necessary or sufficient for treatment success
(Lorenzo-Luaces et al., 2015, 2016) – and if there are individuals for whom this may be more
or less effective.

Meta-analyses of RCT data suggest that treatment effects on depression symptom severity are
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positively related to changes in self-reported negative beliefs. However this is also the case
for non-cognitive treatments and pharmacotherapies, which do not directly target such beliefs
(Garratt et al., 2007; Cristea et al., 2015; Kazantzis et al., 2018). Where more fine-grained
temporal data is available, some studies have identified that changes in negative cognition pre-
cede improvements in depression symptoms (Lorenzo-Luaces et al., 2015, 2016; Schmidt et al.,
2019) – however this has not been consistently observed (e.g., Lemmens et al. 2017), and in
larger samples relationships tend to be small and bidirectional (Persons et al., 2023). Similarly,
there is some evidence that self-reported frequency and ability to use cognitive skills during the
course of treatment is related to success of psychological interventions for depression (Hundt
et al., 2013; Strunk et al., 2014; Hawley et al., 2017; Forand et al., 2018), including in online
settings (Gumport et al., 2018). Although in reality relationships between negative self-beliefs,
interpretational biases and current depression symptoms are likely to be complex and bidirec-
tional, our ability to detect and disentangle such influences in existing data may hampered by
‘contamination’ of self-report measures of these tendencies by similarity to low mood symptoms
themselves (Hundt et al., 2013; Reiter et al., 2021; Lorenzo-Luaces, 2023).

Contrary to our expectations, we found little evidence that individual differences in learning
on the learning task were specifically related to change in attribution tendencies following the
restructuring intervention. Instead, we found robust evidence to support the idea that comple-
tion of the learning task had additive effects to completion of either intervention condition, in
particular in boosting shifts towards self-enhancing (internal and global) attributions of posi-
tive events. Across studies, the magnitude of these effects were related to how quickly partici-
pants updated their choices according to reinforcement of an (implicit) internal-global response
dimension on the learning task. Participants with faster learning rate estimates also showed
greater ability to explicitly label correct responses along these ground truth dimensions, suggest-
ing better overall understanding of the task state-space. Together, this suggests that individuals
with a more intuitive understanding of these dimensions may be most likely to respond to this
kind of training.

Several previous studies which have attempted to shift appraisals of everyday events using on-
line task-based training. For example, in non-clinically anxious or depressed participants, a
single session of app-based reappraisal training (ambiguous story vignettes with partial posi-
tive or negative completion prompts) has been found to result in maladaptive response biases
to ambiguous imagined scenarios in individuals given negative training, and adaptive biases
in individuals given positive training (Woud et al., 2013). Similarly, three weeks of online
training (user-reported current life stresses with peer-based feedback on reinterpretation) was
found to increase self-reported reappraisal skill use – with participants who reported low levels
of reappraisal use at baseline benefiting more in terms of improvement in depression symp-
toms (Morris et al., 2015). A recent network-based meta analysis concluded that, compared
to other task-based approaches such as attentional bias modification, cognitive bias training
(where participants are typically presented with ambiguous everyday scenarios and trained to
resolve them to favour of neutral or positive interpretations) significantly reduced symptoms of
anxiety compared to sham (active control) training, and reduced symptoms of both and anxiety
and depression compared to waitlist control (Fodor et al. 2020).

A novel aspects of the learning task described here is the use of a third-person perspective,
alongside explicit reinforcement. It is possible that this is an effective strategy in helping par-
ticipants learn to recognise different kinds of causal attribution tendencies, since distancing
techniques are often employed during cognitive restructuring (for example, “what would you
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think about the reasons behind this event would be if it happened to a friend?”) (Wisco and
Nolen-Hoeksema, 2010). One advantage of tasks that are able to measure attribution biases
along multiple dimensions – in conjunction with interpretable computational models – is that
this information can be fed back to users over time (for example, “compared to your peers,
we have noticed that you tend to attribute negative events more to overly-general causes”).
Future studies could explore the impact of this kind of informed training on learning speed,
self-relevant attribution, and symptom change, as a form of acute psychological treatment aug-
mentation (Nord et al., 2023). Finally, these findings raise the question of further considering
the importance of training targeted at increasing self-enhancing attributions, as well as decreas-
ing depressogenic attributions, during cognitive therapy. It has previously been highlighted that
learning to adopt self-enhancing attributions may be psychological protective (as it is reliably ob-
served in healthy individuals), and represents a potential resilience mechanism against relapse
of low mood in the face of stressful life events (e.g., Alloy et al. 2011).

The major limitation of the studies presented here is that participation was not restricted to
individuals currently experiencing clinically-significant levels of psychological symptoms, and
that the brief restructuring intervention used here does not represent a real-world (proven to
be effective) psychological treatment component. It will be important to test in future work
whether findings extend to these settings. However, measuring the impact of isolated therapy
components on their proposed cognitive mechanisms in experimental settings has been proposed
to be a useful first step in understanding how and when psychotherapeutic techniques result in
meaningful clinical improvement (Bruijniks et al., 2018; Huibers et al., 2021).

There are also some methodological limitations of our studies. Although inference procedures
for the for the learning task model were well-calibrated and parameter recovery was adequate,
we do not provide empirical data that directly speaks to the test-retest reliability of this mea-
sures – something that is harder to establish for learning compared to choice-based tasks due
to meta-learning or practice effects and may require modifications to task structure (see e.g.,
Zorowitz et al. 2023a). This limits our ability to infer reliable individual differences in learn-
ing between participants. It is also possible that our single-session online experimental design,
whilst supporting fast and high-throughput measurement in a relevant sample of individuals for
internet-based cognitive treatments, may result in increased demand effects (e.g., participants
updating their responses on the second choice task in line with perceived purpose of the study).
Future work should determine whether effects observed here are evident over a longer time-
scales, and if they generalise to less close cognitive measures – including interpretations of the
causes of events in users’ own lives.

A fundamental aim of this kind of research is to help address barriers to the uptake and use of
existing psychological interventions – in particular in the case of remotely-delivered treatments
where the potential for impact is large, but where initializing engagement and high attrition
rates are acute problems (Graham et al., 2019). One factor that has been identified by users
of digital mental health products is a “need..to experience a sense of ‘self’ in the treatment”
(Knowles et al., 2014). It is possible that using cognitive tasks with interpretable model-based
output, and, critically, feeding this information back to users can help address this need. For
example, information about relative performance on learning or choice-based attribution mea-
sures could be used to suggest to users that they may wish to engage with cognitive restructuring
or reappraisal training treatment components earlier in their treatment course (a ‘capitalisation’
approach), or, alternatively, may wish to learn more about these kinds of cognitive biases prior
to treatment practice (a ‘compensation’ approach) (Cheavens et al., 2012). The utility of these
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approaches needs to be established in empirical studies, ideally incorporating participation from
relevant stakeholders. Promisingly, e-mental health applications offer the potential to test these
questions directly and at scale in an agile way, which may help substantially reduce the time
between development and implementation of new treatment strategies (Seiferth et al., 2023).

METHODS

DATA AND CODE AVAILABILITY STATEMENT

Code for implementing all tasks and analyses described here, alongside anonymized study data
is available at the the study github repository.

ETHICAL APPROVAL

All participants gave written informed consent and all studies were approved by the UCL Re-
search Ethics Committee (project ID 21029/001).

PARTICIPANTS

For all studies, participants were recruited from an online research participation platform (Pro-
lific), and were required to be based in the UK, 18-65 years old, and fluent in English.

POWER ANALYSIS

Power analysis for study 1 was based on pilot data concerning the effects of brief cognitive re-
structuring on proportionate choice of internal-negative attributions (see Norbury et al. 2023
for full details), which determined that we could replicate an effect half the pilot data effect size
(d = 0.48) in N=48 participants with 95% power (repeated-measures ANOVA between-within
interaction with 2 groups, 2 measures per group, assuming 0.6 correlation across repeated-
measures and alpha=0.05, G*Power 3.1; Faul et al. 2007). Given the relative ease of online
data collection, subsequent studies were super-powered to N=100 per sample. The data anal-
ysed here are the combined initial discovery and replication samples from Norbury et al. 2023,
yielding a final N of 200.

Power analysis for study 2 was based on the observed simple correlation between mean poste-
rior positive learning rates from the learning training task and change in internal attributions of
positive events in study 1 data (all participants R = 0.27). Analysis using G*Power 3.1 revealed
that N of 111 would allow us to replicate an association of this size with 90% power (point bis-
erial model, one-tailed, alpha=0.05). Given that only 2/3 of participants in the proposed study
design would complete the learning training task, the target N was set to 165 (approximately
55 participants per study arm).
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STUDY DESIGN

The design of each study is described in Figure 1a. Upon recruitment to each study, participants
were assigned to each randomisation arm using a random number generation-based procedure
(ratios 1:1 for study 1, and 1:1:1 for study 2). All studies took place in a remote (online) setting
over a single session, which lasted approximately 1 hour.

MEASURES

Code for implementing each task is available here. All tasks was coded in javascript using the
jsPsych library, version 7.2.1 (de Leeuw, 2015).

Causal attribution task

The causal attribution task was as described in Norbury et al. 2023. For full details of task
development, design optimization, and measurement properties please see this paper. Of note,
output parameters from the associated analysis model have excellent identifiability and test-
retest reliability (posterior mean R=0.82-0.90), and have previously been found to be asso-
ciated with self-reported negative self-beliefs and current depression symptom severity (e.g.,
Dysfunctional Attitudes Scale and PHQ2 total scores and internal-negative attribution tendency,
R=0.35, R=0.26).

Briefly, participants were instructed to imagine themselves in various everyday situations. For
each situation, they were asked to picture the situation described as clearly as they could (“as
if the events were happening to them right now”), and then choose which of several possible
explanations listed below they thought most likely, if it had actually happened to them.

Participants were presented with 32 event scenarios (16 positive and 16 negative events, ran-
domly interleaved), divided into two blocks. Event scenarios were drawn from interpersonal
(e.g., ”Someone you are close to tells you that they admire you”), professional/academic (”You
and your friends do a general knowledge quiz and you get the lowest score”), and general life-
functioning domains (”You fix something around the house that you have been meaning to get
done for a while”). For each event, participants were asked to choose between four response op-
tions that varied orthogonally in terms of internal-external and global-specific explanation types,
derived from examples provided in Abramson et al. 1978. For example, for the event ”You find
out that someone you consider a friend has talked about you negatively behind your back”,
possible explanations were ”Deep down, my friends don’t really like me” (internal-global), ”I
probably did something recently to annoy them” (internal-specific), ”Everyone has bad things
said about them sometimes” (external-global), and ”My friend was probably just in a bad mood
and letting off steam” (external-specific).

Learning training task

The learning training task was developed as a measure of how easily participants are able to
learn to select different kinds of causal attributions, in a reinforced setting. In order to differ-
entiate from the causal attribution task (which aims to measure how participants tend to think
about the causes behind events, if they actually happened to them, the learning training task
used a third-person framing.

Specifically, participants were informed that ”some researchers believe that the the kinds of
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explanations we think are most likely for events can vary, depending on our moods”. They were
told that that they would be learning about how a hypothetical person in a particular mood
might reason about the causes behind events, across three different scenarios, which represent
different kinds of mood that person may be in. For each scenario or mood, it was their job to
learn to select the correct kinds of explanations for that person in that mood, which they had to
learn via trial and error. Given that the visual format of of the task was somewhat similar to the
causal attribution task, participants were provided with explicit instructions prior to each task
stressing the differences between tasks, and required to pass a multiple-choice post-instructions
quiz before proceeding to each task.

Participants completed three blocks of 20 trials, which they were told represented three differ-
ent mood state scenarios. Each trial consisted of a description of an everyday event, with event
descriptions and different potential causal explanations drawn from the battery of items tested
during the development of the causal attribution task (but not included in the final causal attri-
bution task; see Norbury et al. 2023). Across each scenario, events were balanced in terms of
positive and negative valence, and whether they concerned interpersonal interactions. Transi-
tion between each scenario was signalled by a message stating they were about to encounter a
new scenario (where the kinds of reasons thought to be correct may be different to the previous
scenario), and a change in screen background colour.

Since we were primarily interested in how quickly participants were able to learn to select self-
enhancing causal explanations of positive events and avoid unhelpful explanations of negative
events (the goal of cognitive restructuring), the ’correct’ (reinforced) attributions for events in
each scenario were always internal-global explanations for positive events, and non internal-
global for negative events. Response options (potential causal explanations) are unique on each
trial, and opposite contingencies are required for positive and negative events, making the task
relatively hard. On the basis of pilot testing, it was determined that two response options per
trial and a deterministic reinforcement structure (i.e., 100% reinforcement of correct choices)
was required to make the task solveable for participants. Specifically, response options (left-right
randomized on every trial) were internal-global vs internal-specific explanations for scenario 1,
internal-global vs external-global explanations for scenario 2, and internal-global vs external-
specific explanations for scenario 3 (see Figure S2a,c). The former explanations were always
correct for positive events, and the latter explanations always correct for negative events. On
each trial, after participants chose an option, their choice was highlighted, visual feedback given
as to whether that choice was correct or not, and the correct response option highlighted in
green text.

Given that solving the task requires understanding that response options on each trial can vary
according to internal-external and global-specific dimensions, we sought to orient all partici-
pants to these aspects of the task state-space at the start of the task. Specifically, before starting
the task, participants were asked to think about something negative and positive that happened
to them over the last few weeks, and think about the main reason they thought that event
happened. They were then asked to rate that reason on slider scales ranging from [caused]
”completely by myself”...”completely by other people or circumstances” (internal-external di-
mension) and [caused] ”by things that affect all areas of my life”...”by things related to the spe-
cific circumstances” (global-specific dimension) (Figure S3a,c). After each scenario, participants
were asked to complete the same ratings for the explanations that were thought to be correct in
each scenario (again, separately for positive and negative events). Finally, after each scenario,
participants were also asked to provide a brief free-text description of the kinds of causes that
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were correct in that scenario (”Please describe your general impression of the correct reasons
for negative/positive events during the previous scenario”) (Figure S3b,d).

In order to maintain sustained attention on the task in a remote setting, a maximum response
time of 15s was applied to each trial. If this was exceeded, participants saw a time-out message,
and the trial was repeated. Participants were informed that submissions with either a high per-
centage of timed-out trials (>10%) or very short average choice times (<1s) may be rejected,
since completing the task required sustained attention and sufficient time to read the informa-
tion on each trial. In order to motivate performance, participants were also paid a small bonus
depending on the number of correct responses over the course of the task.

Control learning task

The control learning task was exactly matched in trial type and reinforcement structure to the
causal learning task. Participants were informed that ”some researchers believe how quickly
we learn about things can differ, according to our mood”. They would see a series of different
coloured and shaped baskets, below which would be two different objects that could potentially
belong to them. For each scenario, it was their job to learn which kinds of objects belonged in
each basket, by trial and error.

Response options (objects) were again trial unique, with opposite reinforcement contingencies
depending on trial ’valence’ (here, basket shape/colour). Response options varied along the di-
mensions human-made - natural and smaller - bigger than a shoebox. Response option stimuli
were images drawn from a previously-published database of object images for psychological ex-
periments, which has specifically validated all images along these specific dimensions using the
Object Memorability Image Normed Database Software (O-MINDS) v0.1.5 (Duncan Lab, 2022).
O-MINDS generates low-variance stimulus sets with images that are approximately matched for
human-rated memorability, nameability, and emotionality. Specifically, response options (left-
right randomized on every trial) were natural-smaller (than a shoebox) vs natural-bigger objects
for scenario 1, natural-smaller vs humanmade-smaller objects for scenario 2, and natural-smaller
vs objects humanmade-bigger for scenario 3. The former types of objects were always correct
for red baskets, and the latter types of objects always correct for blue baskets.

Participants were asked to provide explicit slider ratings (along the relevant response dimen-
sions) for example objects at the start of the task, to orient them to the task state space. Again,
participants provided explicit ratings and free-text descriptions of objects that belonged in each
type of basket at the end of each scenario. All other aspects of task design were identical to the
learning training task.

Brief cognitive restructuring and control interventions

The brief cognitive restructuring and control interventions were in the form of a series of in-
teractive worksheets, requiring participants to select answers from multiple potential options
during worked examples, and provide input based on recent positive and negative experiences
from their own lives.

The cognitive restructuring intervention was based on cognitive therapy materials (Beck et al.,
1987), and consisted of information about a cognitive model of mood (link between interpreta-
tions of events and feelings), interactive exercises identifying helpful and unhelpful attributions
of the same events, inviting people to practise generating alternative explanations for recent
events in their own lives, and a summary comprehension quiz. The control intervention was

PREPRINT 20



based on materials from emotion-focused therapy (Greenberg, 2015), and was closely matched
in terms of length, interactivity, and self-relevant exercise content – although, importantly, it
did not contain reference to cognitive interpretations influencing feelings or include reappraisal
activities (e.g., reflection on whether a particular emotional reaction is helpful or not). The full
content of each intervention is available here.

Self-reported demographic and clinical information

At the end of each study, participants completed a set of brief self-report measures to provide
information about their recent experience of mental health symptoms, and other sociodemo-
graphic information. Symptoms of low mood were measured using The 9-item Patient Health
Questionnaire (PHQ9) (Kroenke et al., 2001). A brief measure of social anxiety symptoms, the
3-item Social Phobia Inventory (miniSPIN) (Connor et al., 2001), was also included given our
previous observations that social anxiety is relatively elevated in online research participation
samples. The Dysfunctional Attitudes Scale, short form, (DAS), a measure of negative self-beliefs
observed in some depressed people (Beevers et al., 2007), was included as it has previously been
shown to be sensitive to cognitive treatment of low mood (Cristea et al., 2015).

The demographic measure included questions about participant gender identity, age, neurodi-
vergence (defined as ”a term for when someone processes or learns information in a different
way to that which is considered ’typical’: common examples include autism and ADHD”), previ-
ous treatment for a mental health problem, disability across World Health Organization Disabil-
ity Assessment 2.0 domains of functioning (World Health Organization, 2012), and financial,
housing, and employment status (as per Buckman et al. 2022). All self-report batteries included
two infrequency items (in which some responses are logically invalid or highly improbable), in
order to detect potential inattentive responding Zorowitz et al. 2023b.

ANALYSIS

All analyses were carried out in R version 4.1.2 (The R Foundation for Statistical Computing,
2021), using RStudio version 2022.02.0 (RStudio, PBC, 2022).

Initial statistical analysis of learning task data

Preliminary statistical analysis of learning task data was via mixed-effects linear regression mod-
els, as implemented in lme4 (Bates et al., 2015). Specifically, choice accuracy (whether the
chosen response option was correct or not) and choice reaction times (RTs) were modelled as:

accuracy ∼ trialWithinBlock ∗ eventV alence ∗ scenarioNo+ (1|subID) (1)

RT ∼ trialWithinBlock ∗ eventV alence ∗ scenarioNo+ (1|subID) (2)

Explicit ratings scale data and classification label probabilities for free text data (see below)
were modelled as:

value ∼ eventV alence ∗ scenarioNo+ (1|subID) (3)

Classification of learning task free-text data

In order to measure how well participants were able to describe the ground-truth causes in each
scenario in their own words, free-text responses were passed to a zero-shot NLP classification

PREPRINT 21

https://github.com/agnesnorbury/cognitive-restructuring-learning


pipeline. Specifically we used Facebook’s BART-MNLI-LARGE transformer model (Hugging Face,
2023), with the non mutually-exclusive candidate labels [”myself”, ”other people”, ”in general”,
”specific situations”]. Output probabilities for each candidate label were then passed to further
analysis as above.

Hierarchical Bayesian modelling

General methods. Model evaluation and fit procedures were carried out according to Bayesian
workflow recommendations (Gelman et al., 2020), with results of Bayesian analyses reported
in accordance with recent guidelines (Kruschke, 2021). Model parameters were estimated us-
ing Markov-Chain Monte Carlo (MCMC) sampling as implemented in Stan 2.21.0 (Carpenter
et al., 2017), using RStan 2.21.3 (Stan Development Team, 2021). MCMC chains were initi-
ated with random starting values, and posterior distributions were formed using 4 chains of
2000 iterations, with 1000 discarded warm-up samples (i.e., 4000 kept iterations per model).
Convergence of sampling chains was assessed via inspection of trace plots and Gelman-Rubin
(R̂) statistics for each parameter (Gelman and Rubin, 1992). All models used generic weakly-
informative priors (see Supplementary Methods for details).

Different models of the same data were compared using a cross-validation procedure suitable for
hierarchical Bayesian models, which guards against over-fitting by comparing predictive accu-
racy in left-out samples. Specifcally, models were compared in terms of expected log pointwise
predictive density (ELPDdiff ) using the R package loo (Vehtari et al., 2017).

For experimental effects of interest, parameters were assessed using 90% credible intervals (CIs),
with a 90% CI excluding zero interpreted as representing evidence for a meaningful contribu-
tion to posterior parameter estimates (McElreath, 2016). Distributions of posterior parameter
estimates and CIs were visualized using the R package tidybayes (Kay, 2022).

Hierarchical Bayesian analysis of causal attribution task data

Modelling of causal attribution task data was as previously described in Norbury et al. 2023, us-
ing an analysis model for which task design was previously optimized. Specifically, participants’
choices on each trial were coded along two dimensions, according to whether an internal (vs ex-
ternal) or global (vs specific) response option was chosen (y internal and y global, respectively),
with the resulting data analysed within a single hierarchical model with 4 free participant-level
parameters:

y internalp,t,v ∼ Bern(θinternal,p,t,v)

y globalp,t,v ∼ Bern(θglobal,p,t,v)
(4)

where θinternal,p,t,v and θglobal,p,t,v represent the latent traits governing a participant (p)’s ten-
dency to make an internal or global attribution at that time point (t), separately for positively
and negatively valenced (v) event scenarios.

As previously, data from the two task time-points (pre- and post-intervention) were fit using a
single hierarchical model, with separate group means for each parameter at each time-point,
and individual parameter estimates at each time-point assumed to be drawn from a multivariate
normal distribution, given a uniform prior over [−1, 1] on correlation of individual parameter
values across time-points. Also as previously (given evidence of correlations between individ-
uals’ tendencies to make global and internal attributions for positive and negative events), we
assumed that individual tendencies to make internal and global attributions for each type of
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event within a given time-point were drawn from a multivariate normal distribution:
θinternal,1,neg

θglobal,1,neg

θinternal,2,neg

θglobal,2,neg

 ∼ MVNormal



θinternal,µ,1,neg

θglobal,µ,1,neg

θinternal,µ,2,neg

θglobal,µ,2,neg

 , σθ,neg



θinternal,1,pos

θglobal,1,pos

θinternal,2,pos

θglobal,2,pos

 ∼ MVNormal



θinternal,µ,1,pos

θglobal,µ,1,pos

θinternal,µ,2,pos

θglobal,µ,2,pos

 , σθ,pos


(5)

where θinternal,µ,t,v and θinternal,µ,t,v are the group-level means for each parameter and time-
point (modelled separately for positive, pos, and negative, neg, events), and σ is the covariance
between individual-level parameters across attribution types and time points. For full descrip-
tions of parameter constrains and model priors see Supplementary Methods.

Participant-level parameter estimates were constructed using non-centered reparameterization
in order to separate the hierarchical parameters and lower-level parameters in the prior (Pa-
paspiliopoulos et al., 2007). For each parameter (e.g., ϕ) and time point t, participant-level
estimates (ϕp,t) were constructed from a group mean (ϕµ,t) and an individual offset (ϕ̃p,t). The
between-subjects effects of intervention group were then modelled as:

ϕp,1 = ϕµ,1 + ϕ̃p,1

ϕp,2 =

{
ϕµ,2 + ϕ̃p,2 + ϕCR, if CR intervention + learning task
ϕµ,2 + ϕ̃p,2, if control intervetion + learning task

(6)

where ϕCR is a group-level parameter describing potential effects of allocation to the CR inter-
vention on parameter estimates at time 2. For all models, the priors for effects of intervention
conditions on parameter estimates were centred on 0 (e.g., ϕCR ∼ N(0, 1)).

For study 2, this model was augmented to include potential group-level effects of allocation the
learning training task condition (ϕLEARN):

ϕp,1 = ϕµ,1 + ϕ̃p,1

ϕp,2 =


ϕµ,2 + ϕ̃p,2 + ϕCR + ϕLEARN , if CR intervention + learning task
ϕµ,2 + ϕ̃p,2 + ϕLEARN , if control intervention + learning task
ϕµ,2 + ϕ̃p,2 + ϕCR, if CR intervention + control learning task

(7)

Hierarchical Bayesian analysis of learning task data

For model-based analysis of learning task data, choices were collapsed to binary selection of
internal-global and non internal-global responses, separately for positive and negative events,
in order to allow for repeat assessment of learning across the three task scenarios. Choice
data were then modelled using a series of simple reinforcement-learning models based on the
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Rescorla-Wagner algorithm. In this framework, values of each response option (internal-global
and non-internal global explanations) in each state (for a positively or negatively valence event)
are updated on each trial using a surprise term, which is simply the difference between trial
feedback (correct or incorrect) and the previously estimated value for that option in that state,
multiplied by a learning rate.

Model comparison. In order to determine the best model of task performance, several can-
didate models of study 1 learning task data were compared in terms of predictive accuracy in
left-out data (see above). Specifically, a base model, with a single learning rate parameter, and
where choice values were reset at the start of the each scenario (in line with task instructions
that different kinds of explanations may be correct in each scenario), was compared to a set of
related models, where learning rates and initial starting values were allowed to vary between
valence conditions and between first and subsequent scenarios, motivated by features of the
pilot and study 1 datasets (for full details see Table S8). All compared models used a softmax
observation function to link values to observed choices, with a single free parameter governing
inverse temperature (degree of value-drivenness) of this function (see below).

Three models with separate learning rates for positive and negative events, as well as individual-
level free parameters governing starting values for internal-global attributions of positive and
negative events, performed similarly well (difference in expected log pointwise predictive den-
sity less than 5x than the standard error of the estimate; Vehtari et al. 2017; Table S8). Of these,
the model with superior parameter recovery according to simulation-based calibration analy-
sis was taken forward for further analysis (see below). Re-running analyses with the alternate
(’winning’) model produced a very similar pattern of results to those reported below, with all
reported main effects surviving.

For all subsequent analyses, learning task data were analysed as:

Qv,c,t = Qv,c,t + αv,p ∗ (outcomep,t −Qv,c,t) (8)

where Qv,c,t is the value of each choice (c) for each event valence (v) on trial t, alphav,p is the
learning rate parameter for each participant (p) for each event valence (i.e., αpos, αneg), and the
outcome for that trial is either correct (1) or incorrect (0).

Starting values of (initial bias towards or away from) internal-global explanations for each event
valence were set to separate free parameters for the start of the first scenario (individual initial
starting bias) and the second and third scenario (representing degree of expectation reset for
each participant at the start of subsequent scenarios). Q values were assumed to map onto ob-
served choice data (y) using a softmax likelihood function with inverse temperature parameter
β:

yp,t ∼ categorical logit(βp ∗
[
Qv,:,t

]
); (9)

As both learning training and control learning tasks had identical trial type and reinforcement
structure, and in order to facilitate joint analysis, the same model identified above was applied
to both learning and control learning task data in study 2. Since linear-mixed effects analysis
indicated some differences in the form of learning between tasks (in both overall speed of learn-
ing and starting biases; see Figure S2, Supplementary Results), different group-level mean and
variance parameters were specified between tasks types (governing all individual-level parame-
ters, except the inverse temperature parameter β). Formal model comparison confirmed that a
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model with separate group means for different task versions had better predictive accuracy than
a model with single group means (ELPDdiff=-124.8, se=14.6).

Simulation-based calibration analysis. Simulation-based calibration (SBC) analysis was used
to validate inference procedures for the learning task models (Talts et al., 2020). Briefly, this
involves generating draws from the prior predictive distribution of the generative model (cre-
ating N simulated datasets), then fitting the model to each simulated dataset and obtaining D
independent draws from the model posterior. For each parameter of interest, the rank of the
simulated value within the posterior draws is then calculated. If the data generation and in-
ference procedure works as expected, then the resulting ranks should be uniformly distributed
across [0, D] (Modrák et al., 2022). Here, we generated N=150 datasets based on independent
draws from the prior distributions of each parameter, which were specified generously based on
the empirical posterior estimates of parameter distributions observed in pilot data. We then took
D=2000 posterior draws (after discarding 1000 warm-up samples), across two sampling chains.
Graphical summaries of SBC results were generated using the R package SBC (Kim et al., 2023),
and are available for the chosen learning model in Figure S9.

Model performance. Two model-agnostic ‘goodness-of-fit’ measures are reported. Posterior pre-
dictive accuracy was calculated as the match between replicated choice data generated stochas-
tically from posterior parameter estimates and task trial arrays, and the observed data from each
participant. Pseudo-r2 statistics reflect the amount of variance explained by the model relative
to a model of pure chance (Daw, 2011).

Associating separately-modelled causal attribution and learning task data parameters

As simple first-pass check of association between parameter estimates from the causal attribution
and learning training task, we examined correlations between point estimates (posterior means)
of each parameter, weighted by the posterior precision of the predictor variable (i.e., 1/posterior
SD αpos. This is not an optimal way to test for associations between different estimates, since it
neglects information about the individual precision of both parameter estimates.

Joint modelling of causal attribution and learning task data

In order to formally test for associations between parameters, we constructed a series of joint
models of causal attribution and learning task data. Joint modelling allows maximum use of
participant-level data, whilst more appropriately retaining information about the uncertainty or
precision of each kind of measurement (Turner et al., 2017; Haines, 2021).

For the first joint models, the causal attribution task analysis model was extended such that
individual estimates for positive learning rates from the learning task (αpos) were allowed to
influence relevant post-intervention (time 2) causal attribution task parameter estimates via the
inclusion of β weight parameters (βLEARN ; see Haines et al. 2020; Hopkins et al. 2021 for
previous examples of this approach). These β weights can interpreted similarly as in a standard
regression model, with the group-level intervention effects (e.g., ϕCR) now representing the
intercept (see below).

ϕp,1 = ϕµ,1 + ϕ̃p,1

ϕp,2 =

{
ϕµ,2 + ϕ̃p,2 + ϕCR + βLEARN ∗ αpos, if CR intervention + learning task
ϕµ,2 + ϕ̃p,2 + βLEARN ∗ αpos if control intervention + learning task

(10)
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For study 2 data, the first joint model included separate β weights for participants who com-
pleted the learning training vs control learning tasks (βLEARN , βCONTROL):

ϕp,1 = ϕµ,1 + ϕ̃p,1

ϕp,2 =


ϕµ,2 + ϕ̃p,2 + ϕCR + ϕLEARN + βLEARN ∗ αpos, if CR intervention + learning task
ϕµ,2 + ϕ̃p,2 + ϕLEARN + βLEARN ∗ αpos, if control intervention + learning task
ϕµ,2 + ϕ̃p,2 + ϕCR + βCONTROL ∗ αpos if CR intervention + control learning task

(11)

The second joint models added additional β weights for participants randomized to complete
the cognitive restructuring intervention (βLEARN+CR), in order to test for the presence of larger
influences of learning rates on time-2 attribution changes in participants who received both
learning training and brief cognitive restructuring.

For study 1:

ϕp,1 = ϕµ,1 + ϕ̃p,1

ϕp,2 =


ϕµ,2 + ϕ̃p,2 + ϕCR+

βLEARN ∗ αpos + βLEARN+CR ∗ αpos, if CR intervention + learning task
ϕµ,2 + ϕ̃p,2 + βLEARN ∗ αpos if control intervention + learning task

(12)

For study 2:

ϕp,1 = ϕµ,1 + ϕ̃p,1

ϕp,2 =


ϕµ,2 + ϕ̃p,2 + ϕCR + ϕLEARN+

βLEARN ∗ αpos + βLEARN+CR ∗ αpos, if CR intervention + learning task
ϕµ,2 + ϕ̃p,2 + ϕLEARN + βLEARN ∗ αpos, if control intervention + learning task
ϕµ,2 + ϕ̃p,2 + ϕCR + βCONTROL ∗ αpos if CR intervention + control learning task

(13)

For all joint models, the priors for β effects were centred on zero (e.g., βLEARN ∼ N(0, 1)).
Posterior estimates for β weights with a 90% credible interval that excluded zero were taken
as evidence that learning rate estimates were meaningfully informative with respect to post-
intervention changes in causal attribution tendencies.
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SUPPLEMENTARY METHODS

HIERARCHICAL BAYESIAN MODELLING OF CAUSAL ATTRIBUTION TASK DATA

Priors for group-level parameter means were specified using standard normal distributions,
ϕµ,s ∼ N(0, 1). Priors for group-level parameter standard deviations were specified as ϕσ,s ∼
cauchy(0, 1). Priors for individual participant deviations from group-level parameter estimates
(θinternal,p,t,neg, θinternal,p,t,pos, θglobal,p,t,neg, θglobal,p,t,pos) were also specified using standard nor-
mal distributions (ϕ̃p,t ∼ N(0, 1)). The prior over the correlation matrix relating parameter
estimates across time-points was set to be uniform over [−1, 1] using an LKJ(1) prior.

The priors for group-level effects of interventions on parameter estimates at time 2 (ϕCR and
ϕLEARN), and group-level β weights governing influence of learning rates on effects of interest
(βLEARN , βCONTROL, βLEARN+CR), were also specified as standard normal distributions (i.e.,
centred on zero).

Individual parameter estimates for latent traits governing tendency to attribute positive and
negative events to internal and global causes were unconstrained but passed to the Bernoulli
observation function (eq. 4) using an inverse logit transform, scaling probability of endorsement
to the range [0, 1] (see e.g., Figure 2).

HIERARCHICAL BAYESIAN MODELLING OF LEARNING TASK DATA

Priors for group-level parameter means were specified using standard normal distributions,
ϕµ,s ∼ N(0, 1). Priors for group-level parameter standard deviations were specified as ϕσ,s ∼
cauchy(0, 1). Priors for individual participant deviations from group-level parameter estimates
(αneg, αpos, β, q0 1 neg, q0 2 pos, q0 23 neg, q0 23 pos) were also specified using standard nor-
mal distributions (ϕ̃p,t ∼ N(0, 1)).

Individual parameter estimates for learning rates (αneg, αpos) were constrained to be in range
[0, 1], and inverse temperature parameters (β) were constrained to be positive and in the range
[0, 20].
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SUPPLEMENTARY RESULTS

INITIAL STATISTICAL ANALYSIS OF LEARNING TASK DATA

Response accuracy. Choice data for the learning task is shown in Figure S2a,c. Analysis of
choice accuracy via mixed-effects linear models showed that, within each scenario, participants
were able to learn to select the correct attribution type (main effect of trial number within block
on response accuracy, study 1: F1,11793 = 81.7, p < 0.001, study 2: F1,6365 = 60.3, p < 0.001), and
that this effect was greater for later task scenarios (main effect of scenario number, scenario*trial
number interaction, study 1: F1,11793 = 128.8, 8.1, p < 0.005, study 2: F1,6365 = 83.3, p <
0.001), suggesting some learning carried over between scenarios. As can be seen in Figure S2,
there was also a significant influence of event valence on choice accuracy – with lower overall
accuracy and slower learning over the task for positive events (main effect of event valence,
valence*trial number interaction, valence*trial*scenario number interaction, study 1: F1,11793 =
245.0, 38.5, 19.6, p < 0.001, study 2: F1,6365 = 167.6, 22.0, 8.7, p < 0.005). This suggests that
participants found it harder to learn to select self-enhancing (internal-global) attributions of
positive events compared to unhelpful (non internal-global) attributions of negative events.

Choice reaction times. This valence asymmetry was also reflected in choice RTs (Figure S2b,d).
Overall, participants were slower to choose responses for positive events (main effect of event
valence on choice reaction time, study 1: F1,11793 = 8.4, p < 0.005, study 2: F1,6365 = 4.1, p <
0.05), although this was mainly evident in the first scenario (valence*trial*scenario number
interaction, study 1: F1,11793 = 33.4, p < 0.001, study 2: F1,6365 = 15.0, p < 0.001). Choice times
indicated maintenance of considered responding over the course of the task (mean RT>4s).

Explicit post-scenario ratings data. Across response dimensions and scenarios, participants
were able to recognise that the characteristics of ‘correct’ causes differed between positive
and negative events (main effect of event valence on ratings study 1: F1,2189 = 1091.7, p <
0.001, study 2: F1,1284 = 638.1, p < 0.001; Figure S3c), with this knowledge improving over
the task (valence*scenario number interaction study 1: F2,2189 = 6.8, p < 0.005, study 2:
F1,1284 = 6.85, p < 0.005). Both of these effects were of smaller magnitude for the global-specific
compared to the internal-external response scale ratings (scale*valence interaction, study 1:
F1,2189 = 16.8, p < 0.001, study 2: F1,1284 = 19.3, p < 0.001) – suggesting that participants found
this response dimension harder to parse.

Free text post-scenario descriptions. A zero-shot natural language classifier (BART-LARGE-
MNLI) was also able to distinguish ground truth cause types from participants’ free text descrip-
tions of each scenario (Figure S3d). Specifically, there were significant differences in output label
probabilities in the expected direction for the internal-external (“myself”, “other people”) di-
mension (event valence*label interactions on output scores, study 1: F1,2189 = 434.7, p < 0.001,
study 2: F1,1177 = 301.8, p < 0.001), with differences in label probabilities increasing over the
task (valence*label*scenario number interaction, study 1: F2,2189 = 37.7, p < 0.005, study 2:
F2,1177 = 15.7, p < 0.001). For global-specific (“in general”, “specific situations”), there were
significant differences in output label probabilities in the expected direction only in study 1
(F1,2189 = 33.3, p < 0.001; study 2: F1,1284 = 3.3, p = 0.07), although in both cases differences
in label probabilities increased over the task (valence*label*scenario number interaction, study
1: F2,2189 = 6.3, p < 0.005, study 2: F2,1284 = 6.5, p < 0.005).

Relationship between explicit ratings and free text post-scenario descriptions. Explicit
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ratings and free text classification label probabilities for the internal-external dimension were
also weakly correlated with each other (study 1: Rs = 0.17 − 0.36, p <= 0.01, study 2:
Rs = 0.26− 0.48, p < 0.001; Figure S4), suggesting that these measures were capturing at least
partially shared information. Specifically, participants with more accurate post-scenario internal-
external explicit cause ratings provided free text descriptions that were more easily classifiable
with ground truth cause type labels for this response dimension. For the noisier global-specific
dimension, associations were not significant (study 1 and 2: Rs < 0.14, p > 0.05).

Differences between causal learning training and control tasks. When choice accuracy data
for the causal attribution and control learning tasks were combined in the same model, there
was evidence for lower overall accuracy for the control learning task (main effect of task type
on response accuracy, F1,5381 = 91.3, p < 0.001) – likely as performance was not aided by the
presence of group-level initial biases towards correct response options (as was the case for the
causal task, Figure S2c). Control task participants did not also show a valence asymmetry in re-
sponse accuracy (for the control task, ‘valence’ represents sorting basket colour/type rather than
positive or negative events; task type*valence interaction, F1,9662 = 284.7, p < 0.001), and did
not show slower learning over the task for ‘positive’ events (task type*valence*scenario num-
ber, task type*valence*trial number, and task type*valence*trial*scenario number interactions,
F1,9662 = 148.1, 76.0, 33.7, p < 0.001) – suggesting this effect was specific to a reticence to select
self-enhancing attributions on the causal learning task.

When choice time data for both tasks were analysed together, choice times were significantly
faster for the control learning task (main effect of task type, F1,564 = 269.1, p < 0.001) - likely
reflecting faster processing speed for images compared to text-based stimuli (Figure S2d). Con-
trol task participants were also not slower to choose response options for ‘positive’ (red basket)
stimuli (task type*valence interaction, F1,9662 = 4.1, p < 0.05).

Ratings values for the control task were substantially less variable and more extreme (Fig-
ure S3c), suggesting that the response dimensions for this task were more explicit and easily
parsed by participants (task type*valence interaction in both tasks model, F1,1782 = 33.8, p <
0.001).

If the free-text responses from the control learning task were classified using the same candi-
date labels as for the causal learning task (which should not be relevant), output label proba-
bilities were significantly lower across response dimensions (main effect of task type, F1,162 =
139.6, 46.7, p < 0.001), and were not sensitive to trial ‘valence’ (task type*valence*label inter-
action, F1,1782 = 102.1, 6.44, p < 0.02) - suggesting that the classifier results were somewhat
specific to the task for which candidate labels represented the ground truth, rather than, for
example, picking out general language features not related to task content.

MODEL-BASED ANALYSIS OF LEARNING TASK DATA

Model performance. The mean posterior predictive accuracy of the model (agreement between
real choices and simulated choice data generated from posterior parameter estimates) in study
1 was 0.88 (SD 0.08), and in study 2 0.88 (SD 0.07). Pseudo-r2 (ratio of variance explained
compared to a random model) was 0.59 in study 1 and 0.57 in study 2.

For study 2 data, model performance was similar when separately considering the likelihood
of choice data of participants from either task type (causal learning task, mean posterior pre-
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dictive accuracy=0.89, pseudo-r2=0.59; control learning task, mean posterior predictive accu-
racy=0.86, pseudo-r2=0.52).
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SUPPLEMENTARY FIGURES

Figure S1: Distribution of self-reported clinical scores for both studies. a Study 1 partici-
pants. The restructuring group represents participants randomized to the cognitive restructuring
intervention, with the control group representing participants randomized the control (emotion-
focused) intervention. Both groups completed the causal attribution learning task prior to com-
pleting the intervention. b Study 2 participants. Group 1 represents participants randomized
to complete the learning task + cognitive restructuring intervention. Group 2 represents the
learning task + control intervention condition. Group 3 represents the control learning task
+ cognitive restructuring intervention condition. PHQ9 total, Physician’s Health Questionnaire
9-item measure of depressed mood total score. miniSPIN total, mini Social Phobia Inventory
total score. DAS-SF total, Dysfunctional Attitude Scale short-form total score. Black dotted lines
represent previously-published cut-off scores for clinically-significant levels of symptoms. For
the DAS-SF, where no such cut-off score is available, grey dotted lines represent mean scores in
previously-published samples of depressed inpatients. Participants were also asked if they had
ever previously received treatment (tx) for a mental health problem (see Table 1).
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Figure S2: Choice accuracy and response time data for the learning training tasks. a Study
1 learning task choice accuracy data. Participants were instructed that they would learn about
three different scenarios, each of which represented a different kind of mood a person could
be in. For each scenario, they had to learn (by trial and error) which kind of explanations for
events were thought to be correct for a person in that particular mood. In truth, the correct
(reinforced) attributions were always self-enhancing explanations (i.e., internal-global attribu-
tions for positive events, and non internal-global attributions for negative events).b Choice re-
action times during the task, by event valence (in ms). c Study 2 learning task choice accuracy
data. Here, the top panels represent the same task as in a (the ’causal’ learning training task),
and bottom panels represent data from the control learning task. In the control learning task,
rather than selecting between different causes of events (trial-unique responses that varied ac-
cording to internal-external and global-specific response directions), participants were asked to
choose between images of trial-unique objects that varied according to human made-natural and
smaller-larger than a shoebox response dimensions. Trial type and reinforcement structure was
identical to the learning training task, with opposite response options reinforced as correct for
different coloured/shaped object ‘baskets’ (analogous to event valence in the causal attribution
learning task). d Choice reaction times for each learning task, in study 2 participants. Line
graphs in all panels represent the mean and standard error of participants’ data.
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Figure S3: Explicit ratings and free-text description data from the learning training tasks.
a Within-task explicit cause ratings data for study 1. After each scenario, participants were
asked to rate the kinds of causes of events that were thought to be correct, along two separate
dimensions (external-internal and specific-global). Prior to starting the task, participants were
asked to think about a recent positive and negative event from their own lives, and asked to
rate the causes of these events along these two dimensions, in order to help familiarise them
with the response option state space. b Within-task free-text cause description data for study
1. After each scenario, participants were also asked to provide a free-text description of the
kinds of causes that were thought to be correct, separately for positive and negative events.
This data was passed to a natural language processing algorithm (BART-LARGE-MNLI), which
output classification probabilities for the candidate labels [events were caused by] “myself”,
“other people” “specific situations”, and “in general” (labels were non mutually-exclusive). In
all panels, raincloud plots show individual participant data, summarised by boxplots (median
and interquartile range).
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Figure S4: Associations between explicit cause ratings and classifier label probabilities for
free-text descriptions of causes from the learning training task (study 1). X axes, explicit
ratings of cause types following each scenario, on the external-internal response dimension.
Y axes, classifier output probabilities for post-scenario free text descriptions of causes, for the
labels [caused by] “myself” and [caused by] “other people”.
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Figure S5: Correlations between mean posterior estimates of learning rates for positive
events on the learning training task (αpos) and within-task explicit cause type ratings. Pre-
task ratings are ratings provided by participants prior to starting the task, during which they are
asked to reflect on the causes behind a recent negative and positive event from their own lives,
which would not be expected to relate to within-task learning rates. Scenarios 1-3 represent
ratings of ‘correct’ causes following each task scenario, on an external-internal dimension scale
(events were caused. . . ”completely by other people or circumstances”, “completely by myself’)
and specific-global dimension scale (events were caused. . . ”by things related to the specific cir-
cumstances”, “by things that affect all areas of my life”). Posterior αpos estimates are summarised
by the mean of the posterior distribution for each participant, with point weight representing
the precision of estimation (1/posterior SD).
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Figure S6: Correlations between mean posterior estimates of learning rates for positive
events on the learning training task (αpos) and label classification probabilities of free-text
descriptions of correct cause types (study 1) Scenarios 1-3 represent classifier output for free-
text descriptions of the kinds of ‘correct’ causes in each preceding task scenario. Posterior αpos

estimates are summarised by the mean of the posterior distribution for each participant, with
point weight representing the precision of estimation (1/posterior SD).
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Figure S7: Relationships between mean posterior estimates of learning rates for positive
events on the learning training task (αpos) and self-reported participant demographic and
clinical information (study 1).

Figure S8: Relationships between mean posterior estimates of learning rates for positive
events from the learning training and and control learning tasks (αpos) and self-reported
participant demographic and clinical information (study 2).
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Figure S9: Simulation-based calibration analysis for the learning training task. a Rank
histogram, a check for uniformity of posterior draw ranks. Horizontal black line, expected
average count; blue trapezoid, approximate 95% interval for expected deviations over ranks. b
(E)CDF, (empirical) cumulative distribution functions for each model parameter. Blue ellipses,
regions outlining expected 95% deviations; circular plots show are rotated by 45 for easier
visualisation of deviations. c Coverage plots, which show the proportion of true variable values
that fall within the 95% posterior credible intervals for each parameter. Rank histogram, a
check for uniformity of posterior draw ranks. Horizontal black line, expected average count;
blue trapezoid, approximate 95% interval for expected deviations over ranks. d Simulated and
recovered posterior values for independently randomly generated parameter values, for 150
simulated datasets.
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SUPPLEMENTARY TABLES

mean se (mean) sd 10% 90% Neff R̂

Mean θ for internal attributions
of negative events at time 1

-0.222 0.002 0.061 -0.302 -0.144 778 1.007

Mean θ for internal attributions
of negative events at time 2

-0.525 0.003 0.090 -0.640 -0.410 740 1.004

Mean θ for internal attributions
of positive events at time 1

1.085 0.003 0.071 0.994 1.176 718 1.002

Mean θ for internal attributions
of positive events at time 2

2.511 0.007 0.182 2.278 2.742 715 1.003

Mean θ for global attributions
of negative events at time 1

-0.580 0.001 0.051 -0.645 -0.514 1313 1.003

Mean θ for global attributions
of negative events at time 2

-0.730 0.002 0.066 -0.813 -0.646 1299 1.001

Mean θ for global attributions
of positive events at time 1

-0.062 0.003 0.066 -0.150 0.019 648 1.003

Mean θ for global attributions
of positive events at time 2

0.661 0.006 0.163 0.455 0.865 869 1.000

Effect of restructuring on
θ internal-negative at time 2

-0.476 0.004 0.132 -0.645 -0.306 894 1.006

Effect of restructuring on
θ internal-positive at time 2

0.331 0.009 0.254 0.004 0.665 746 1.004

Effect of restructuring on
θ global-negative at time 2

0.069 0.002 0.090 -0.049 0.183 1561 1.003

Effect of restructuring on
θ global-positive at time 2

0.493 0.008 0.240 0.185 0.798 844 1.004

Table S1: Hierarchical Bayesian model results for effects of cognitive restructuring on
causal attribution tendencies in study 1 data Mean, posterior mean; se (mean), standard
error of the posterior mean. 10%, 90%, posterior probability quantiles for parameter estimates;
Neff , effective sample size (an estimate of the number of independent draws from the posterior
distribution of the estimand of interest); R̂, the ratio of the average variance of draws within
each chain to the variance of the pooled draws across chains (if all chains are at equilibrium,
R̂ will be 1). All values are raw (untransformed) parameter estimates (for transformation con-
straints applied to main text figures see Supplementary Methods).
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mean se (mean) sd 10% 90% Neff R̂

Mean θ for internal attributions
of negative events at time 1

-0.285 0.002 0.067 -0.370 -0.200 1295 1.001

Mean θ for internal attributions
of negative events at time 2

-0.106 0.005 0.180 -0.339 0.121 1266 1.002

Mean θ for internal attributions
of positive events at time 1

1.018 0.002 0.074 0.924 1.113 1641 1.001

Mean θ for internal attributions
of positive events at time 2

1.074 0.009 0.307 0.671 1.462 1184 1.001

Mean θ for global attributions
of negative events at time 1

-0.627 0.002 0.067 -0.713 -0.543 1582 1.002

Mean θ for global attributions
of negative events at time 2

-0.625 0.004 0.162 -0.834 -0.420 1499 1.001

Mean θ for global attributions
of positive events at time 1

-0.022 0.001 0.064 -0.103 0.061 1815 1.002

Mean θ for global attributions
of positive events at time 2

-0.295 0.010 0.304 -0.675 0.101 920 1.001

Effect of restructuring on
θ internal-negative at time 2

-0.299 0.004 0.149 -0.490 -0.108 1509 1.002

Effect of restructuring on
θ internal-positive at time 2

0.634 0.007 0.268 0.291 0.973 1319 1.000

Effect of restructuring on
θ global-negative at time 2

0.003 0.003 0.135 -0.166 0.178 1734 1.000

Effect of restructuring on
θ global-positive at time 2

0.326 0.008 0.260 -0.011 0.653 1009 1.001

Effect of learning training on
θ internal-negative at time 2

-0.491 0.004 0.150 -0.682 -0.298 1430 1.002

Effect of learning training on
θ internal-positive at time 2

1.147 0.008 0.268 0.803 1.492 1002 1.006

Effect of learning training on
θ global-negative at time 2

-0.149 0.003 0.136 -0.329 0.025 1732 1.001

Effect of learning training on
θ global-positive at time 2

0.939 0.009 0.261 0.604 1.267 935 1.004

Table S2: Hierarchical Bayesian model results for effects of cognitive restructuring and
learning training on causal attribution tendencies in study 2 data. Mean, posterior mean;
se (mean), standard error of the posterior mean. 10%, 90%, posterior probability quantiles for
parameter estimates; Neff , effective sample size (an estimate of the number of independent
draws from the posterior distribution of the estimand of interest); R̂, the ratio of the average
variance of draws within each chain to the variance of the pooled draws across chains (if all
chains are at equilibrium, R̂ will be 1). All values are raw (untransformed) parameter estimates
(for transformation constraints applied to main text figures see Supplementary Methods).
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mean se (mean) sd 10% 90% Neff R̂

Effect of restructuring on
θ internal-negative at time 2

-0.477 0.004 0.134 -0.651 -0.304 1122 1.002

Effect of restructuring on
θ internal-positive at time 2

0.246 0.006 0.219 -0.038 0.529 1265 1.005

Effect of restructuring on
θ global-negative at time 2

0.071 0.002 0.092 -0.046 0.186 1660 1.000

Effect of restructuring on
θ global-positive at time 2

0.417 0.005 0.193 0.169 0.659 1447 1.004

BetaLEARN , effect of αpos on
θ internal-positive at time 2

0.538 0.015 0.177 0.344 0.745 148 1.045

BetaLEARN , effect of αpos on
θ global-positive at time 2

0.439 0.013 0.146 0.282 0.615 121 1.043

Table S3: Joint hierarchical model 1 results for study 1 data. Mean, posterior mean; se
(mean), standard error of the posterior mean. 10%, 90%, posterior probability quantiles for
parameter estimates; Neff , effective sample size; R̂, the ratio of the average variance of draws
within each chain to the variance of the pooled draws across chains). All values are raw (un-
transformed) parameter estimates, except β values which are in units of αpos (which ranges
[0,1]), which have been transformed to a similar range as other intervention effects by /100.
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mean se (mean) sd 10% 90% Neff R̂

Effect of restructuring on
θ internal-negative at time 2

-0.321 0.004 0.154 -0.517 -0.127 1901 1.001

Effect of restructuring on
θ internal-positive at time 2

0.677 0.006 0.299 0.294 1.062 2612 1.000

Effect of restructuring on
θ global-negative at time 2

0.032 0.003 0.141 -0.144 0.211 1943 1.000

Effect of restructuring on
θ global-positive at time 2

0.347 0.006 0.277 -0.007 0.694 1987 1.001

Effect of learning training on
θ internal-negative at time 2

-0.520 0.004 0.161 -0.730 -0.316 1849 1.000

Effect of learning training on
θ internal-positive at time 2

-0.888 0.016 0.529 -1.555 -0.217 1087 1.002

Effect of learning training on
θ global-negative at time 2

-0.139 0.003 0.145 -0.324 0.044 1957 1.000

Effect of learning training on
θ global-positive at time 2

-0.959 0.021 0.556 -1.653 -0.260 689 1.003

BetaLEARN , effect of αpos on
θ internal-positive at time 2

0.291 0.004 0.088 0.190 0.403 618 1.005

BetaLEARN , effect of αpos on
θ global-positive at time 2

0.257 0.004 0.088 0.155 0.372 472 1.007

BetaCONTROL, effect of αpos on
θ internal-positive at time 2

0.007 0.001 0.015 -0.010 0.025 465 1.013

BetaCONTROL, effect of αpos on
θ global-positive at time 2

0.007 0.001 0.014 -0.009 0.023 635 1.008

Table S4: Joint hierarchical model 1 results for study 2 data. Mean, posterior mean; se
(mean), standard error of the posterior mean. 10%, 90%, posterior probability quantiles for
parameter estimates; Neff , effective sample size; R̂, the ratio of the average variance of draws
within each chain to the variance of the pooled draws across chains). All values are raw (un-
transformed) parameter estimates, except β values which are in units of αpos (which ranges
[0, 1]), which have been transformed to a similar range as other intervention effects by /100.

PREPRINT 48



mean se (mean) sd 10% 90% Neff R̂

Effect of restructuring on
θ internal-negative at time 2

-0.478 0.004 0.134 -0.651 -0.310 1340 1.000

Effect of restructuring on
θ internal-positive at time 2

-0.334 0.021 0.462 -0.931 0.249 490 1.021

Effect of restructuring on
θ global-negative at time 2

0.071 0.002 0.092 -0.046 0.189 2003 1.001

Effect of restructuring on
θ global-positive at time 2

0.179 0.010 0.386 -0.321 0.664 1498 1.004

BetaLEARN , effect of αpos on
θ internal-positive at time 2

0.587 0.010 0.193 0.375 0.832 404 1.005

BetaLEARN , effect of αpos on
θ global-positive at time 2

0.482 0.009 0.160 0.309 0.692 344 1.008

BetaLEARN+CR, additional
effect of αpos on θ internal-positive
at time 2 in restructuring group

0.215 0.007 0.161 0.021 0.422 470 1.021

BetaLEARN+CR, additional
effect of αpos on θ global-positive
at time 2 in restructuring group

0.093 0.003 0.102 -0.026 0.219 1242 1.004

Table S5: Joint hierarchical model 2 results, for study 1 data. Mean, posterior mean; se
(mean), standard error of the posterior mean. 10%, 90%, posterior probability quantiles for
parameter estimates; Neff , effective sample size; R̂, the ratio of the average variance of draws
within each chain to the variance of the pooled draws across chains). All values are raw (un-
transformed) parameter estimates, except β values which are in units of αpos (which ranges
[0, 1]), which have been transformed to a similar range as other intervention effects by /100.
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mean se (mean) sd 10% 90% Neff R̂

Effect of restructuring on
θ internal-negative at time 2

-0.317 0.004 0.151 -0.510 -0.123 1859 1.001

Effect of restructuring on
θ internal-positive at time 2

1.058 0.015 0.553 0.335 1.773 1304 1.002

Effect of restructuring on
θ global-negative at time 2

0.017 0.003 0.139 -0.161 0.198 1795 1.000

Effect of restructuring on
θ global-positive at time 2

-0.163 0.013 0.487 -0.781 0.458 1470 1.000

Effect of learning training on
θ internal-negative at time 2

-0.512 0.004 0.158 -0.721 -0.314 1847 1.000

Effect of learning training on
θ internal-positive at time 2

-0.718 0.017 0.565 -1.440 -0.009 1092 1.001

Effect of learning training on
θ global-negative at time 2

-0.148 0.004 0.146 -0.330 0.042 1649 1.002

Effect of learning training on
θ global-positive at time 2

-1.369 0.028 0.572 -2.101 -0.644 426 1.007

BetaLEARN , effect of αpos on
θ internal-positive at time 2

0.357 0.007 0.127 0.221 0.519 343 1.016

BetaLEARN , effect of αpos on
θ global-positive at time 2

0.281 0.007 0.112 0.161 0.420 270 1.018

BetaLEARN+CR, additional
effect of αpos on θ internal-positive
at time 2 in restructuring group

-0.066 0.003 0.098 -0.187 0.052 1005 1.003

BetaLEARN+CR, additional
effect of αpos on θ global-positive
at time 2 in restructuring group

0.087 0.002 0.082 -0.008 0.189 1302 1.002

BetaCONTROL, effect of αpos on
θ global-positive at time 2

0.005 0.001 0.018 -0.014 0.027 519 1.006

BetaCONTROL, effect of αpos on
θ internal-positive at time 2

0.011 0.001 0.015 -0.006 0.029 407 1.010

Table S6: Joint hierarchical model 2 results, for study 2 data. Mean, posterior mean; se
(mean), standard error of the posterior mean. 10%, 90%, posterior probability quantiles for
parameter estimates; Neff , effective sample size; R̂, the ratio of the average variance of draws
within each chain to the variance of the pooled draws across chains). All values are raw (un-
transformed) parameter estimates, except β values which are in units of αpos (which ranges
[0, 1]), which have been transformed to a similar range as other intervention effects by /100.
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model description
ELPDdiff

(choice data)
SEdiff

(choice data)

base model
Model of choice data only (pre and post-intervention),
as described in Norbury et al., 2023.

-21.5 9.8

joint model 1
Joint model of choice data + β weights representing
influence of αpos on post-intervention internal-
positive and global-positive parameter estimates

-10.3 9.3

joint model 2

As above, with additional β weights representing
influence of αpos on post-intervention internal-
positive and global-positive parameter estimates in
restructuring condition participants

0.0 0.0

Table S7: Model comparison results for causal attribution task data likelihood from the
original (base) model, compared to joint models of causal attribution and learning task
data in study 1. ELPDdiff , difference in expected log pointwise predictive density for each
model from the best model, which is defined as having zero difference to itself. SEdiff , the
standard error of this difference.
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model description
N

params
ELPDdiff SEdiff

m qlearning negpos 1alpha

Q-learning model with separate values for internal-
global and non-internal global response options for
positive and negative events, single learning rate α,
and inverse softmax temperature parameter β as
individual-level free parameters

2 -655.7 41.6

m qlearning negpos 2alpha
As above, with separate αs for positive and negative
events

3 -526.8 36.3

m qlearning negpos 2alpha 2q0
As above, with a group-level parameter governing
the starting values of internal-global attributions (q0)
for positive and negative events, across all scenarios

3 -70.0 14.8

m qlearning negpos 2alpha 2q0 init delta
As above, with q0 applied to the first scenario only,
then incremented by a group-level delta parameter
for scenarios 2,3

3 -20.3 10.5

m qlearning negpos 2alpha 2q0 init 2delta
As above, with scenario 2 q0 = q0 + delta, and
scenario 3 q0 = q0 + 2*delta

3 -13.6 8.2

m qlearning negpos 2alpha 2q0i
As m qlearning negpos 2alpha, but with q0 as an
individual-level free parameter applied to all
scenarios (q0i)

5 -59.9 13.6

m qlearning negpos 2alpha 2q0i init As above, with q0i applied to scenario 1 only 5 -428.6 30.9

m qlearning negpos 2alpha 2q0i init delta
As above, with starting value for scenarios 2,3
defined as q0i + a group-level delta parameter

5 -2.4 7.3

m qlearning negpos 2alpha 2q0i init 2delta
As above, with scenario 2 q0 = q0i + delta, and
scenario 3 q0 = q0i + 2*delta

5 0.0 0.0

m qlearning negpos 2alpha 2q0i1 2q0i23*
As m qlearning negpos 2alpha 2q0i, with
separate individual-level free parameters governing
q0 for scenario 1 and scenarios 2,3

7 -5.0 9.1

Table S8: Model comparison results for causal attribution learning task data from study
1. ELPDdiff , difference in expected log pointwise predictive density for each model from the
best model, which is defined as having zero difference to itself. SEdiff , the standard error of
this difference. Models with an ELPD difference of greater than several times the SE of the
estimate are usually taken to indicate better predictive performance. N params, number of
individual-level free parameters. Bold font, best models with roughly equivalent performance.
*, model taken forward for subsequent analyses based on results of simulation-based calibration
and parameter recovery analysis.
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